160.相交链表
一、问题描述
编写一个程序,找到两个单链表相交的起始节点。
示例:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
输出:Reference of the node with value = 8
输入解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
注意:
- 如果两个链表没有交点,返回
null
. - 在返回结果后,两个链表仍须保持原有的结构。
- 可假定整个链表结构中没有循环。
- 程序尽量满足 O(n) 时间复杂度,且仅用 O(1) 内存。
二、方案一:哈希表法
1、思路
遍历第一个链表,将每个结点存储在哈希表中。然后遍历第二个链表,检查每个结点是否在哈希表中。第一个在哈希表中的结点即为相交的起始节点。
2、代码实现
go
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func getIntersectionNode(headA, headB *ListNode) *ListNode {
nodesInA := map[*ListNode]bool{}
for node := headA; node != nil; node = node.Next {
nodesInA[node] = true
}
for node := headB; node != nil; node = node.Next {
if nodesInA[node] {
return node
}
}
return nil
}
3、复杂度分析
- 时间复杂度:O(m+n),其中 m 和 n 分别是两个链表的长度。
- 空间复杂度:O(m),需要存储第一个链表的每个结点。
三、方案二:双指针法
1、思路
使用两个指针,分别从两个链表的头结点开始遍历。当其中一个指针到达链表尾部时,将其移动到另一个链表的头结点。这样,如果两个链表相交,它们会在交点相遇。
2、代码实现
go
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func getIntersectionNode(headA, headB *ListNode) *ListNode {
if headA == nil || headB == nil {
return nil
}
pa, pb := headA, headB
for pa != pb {
if pa == nil {
pa = headB
} else {
pa = pa.Next
}
if pb == nil {
pb = headA
} else {
pb = pb.Next
}
}
return pa
}
3、复杂度分析
- 时间复杂度:O(m+n),其中 m 和 n 分别是两个链表的长度。
- 空间复杂度:O(1),只需要常数级别的额外空间。
四、总结
方案 | 时间复杂度 | 空间复杂度 | 备注 |
---|---|---|---|
哈希表法 | O(m+n) | O(m) | 需要额外的空间存储第一个链表 |
双指针法 | O(m+n) | O(1) | 不需要额外空间,更优 |
双指针法在空间复杂度上优于哈希表法,因为它不需要额外的空间来存储链表节点。在实际应用中,如果对空间复杂度有要求,通常更倾向于使用双指针法。